Multiple sclerosis (MS) is a disease that can affects parts of the central nervous system (CNS), including the brain, spinal cord and the optic nerves in your eyes. It is an autoimmune disease, which means that the immune system attacks specific parts of the body.

In the case of MS, it destroys nerve axons and myelin, which are two key components involved in the conduction of nerve impulses. As a result, patients with MS suffer from numerous neurological problems, which can cause problems with:

  • Vision
  • Balance
  • Muscle control
  • Basic body functions.

Research

MS is a complex disease and its cause remains elusive. However, Intense study over the last ten years has yielded important information about how the disease progresses. Emerging technology (e.g induced pluripotent stem cell technology) and future treatments are focusing on ways to understand the disease as well as protecting the axonal and myelin from damage. 

  • Studying the disease using animal models
  • Using an acute nervous system inflammatory model (experimental autoimmune encephalomyelitis) 
  • pluripotent stem cell technology (iPS cells)
  • Relapsing-remitting and chronic progressive models that mimic many features seen in multiple sclerosis, including genetic, immunological and pathological aspects 
  • Applications of nanotechnology to develop vaccines
  • Chemically induced-demyelination (the cuprizone model) to better understand the how the central nervous system repairs itself with the complication of the inflammatory pathology. 
     

Featured Publications

More Publications

Authors
Title
Published In

Lehmann-Horn K, Sagan SA, Bernard CC, Sobel RA, Zamvil SS.

B cell VLA-4-deficiency reduces leukocyte recruitment and susceptibility to autoimmune encephalomyelitis.

Ann Neurol. 2015 May;77(5):902-8. doi: 10.1002/ana.24387. Epub 2015 Mar 28. Impact Factor: 9.977. Ranking: 12/252.

Shu R, Wong W, Ma QH, Yang ZZ, Zhu H, Liu FJ, Wang P, Ma J, Yan S, Polo JM, Bernard CC, Stanton LW, Dawe GS, Xiao ZC.

APP intracellular domain acts as a transcriptional regulator of miR-663 suppressing neuronal differentiation.

Cell Death Dis. 2015 Feb 19;6:e1651. doi: 10.1038/cddis.2015.10. Impact Factor: 5.014. Ranking: 49/1874.

Huuskes BM, Wise AF, Cox AJ, Lim EX, Payne NL, Kelly DJ, Samuel CS, Ricardo SD.

Combination therapy of mesenchymal stem cells and serelaxin effectively attenuates renal fibrosis in obstructive nephropathy.

FASEB J. 2015 Feb;29(2):540-53. doi: 10.1096/fj.14-254789. Epub 2014 Nov 13. Impact Factor: 5.043. Ranking: 50/289.

Chen X, Kezic JM, Forrester JV, Goldberg GL, Wicks IP, Bernard CC, McMenamin PG.

In vivo multi-modal imaging of experimental autoimmune uveoretinitis in transgenic reporter mice reveals dynamic nature of inflammatory changes during disease progression.

J Neuroinflammation. 2015 Jan 27;12:17. doi: 10.1186/s12974-015-0235-6.

Payne NL, Sylvain A, O'Brien C, Herszfeld D, Sun G, Bernard CC.

Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases.

N Biotechnol. 2015 Jan 25;32(1):212-28. doi: 10.1016/j.nbt.2014.05.001. Epub 2014 May 9. Impact Factor: 2.898. Ranking: 50/162.

Tan JL, Chan ST, Lo CY, Deane JA, McDonald CA, Bernard CC, Wallace EM, Lim R.

Amnion cell mediated immune modulation following bleomycin challenge: controlling the regulatory T cell response.

Stem Cell Res Ther. 2015; 6(1): 8. doi: 10.1186/scrt542. Epub 2015 Jan 29. Impact Factor: 3.368. Ranking: 36/123.

Robinson AM, Miller S, Payne N, Boyd R, Sakkal S, Nurgali K.

Neuroprotective Potential of Mesenchymal Stem Cell-Based Therapy in Acute Stages of TNBS-Induced Colitis in Guinea-Pigs.

PLoS One. 2015 Sep 23;10(9):e0139023. doi: 10.1371/journal.pone.0139023. eCollection 2015. Impact Factor: 3.234. Ranking: 9/57

Tafreshi AP, Sylvain A, Sun G, Herszfeld D, Schulze K, Bernard CC.

Lithium chloride improves the efficiency of induced pluripotent stem cell-derived neurospheres.

Biol Chem. 2015 Aug;396(8):923-8. doi: 10.1515/hsz-2014-0261. Impact Factor: 3.268. Ranking: 106/289.

McDonald CA, Payne NL, Su G, Clayton DJ, Del Borgo MP, Aguilar MI, Perlmutter P, Bernard CC.

Single beta(3)-amino acid substitutions to MOG peptides suppress the development of experimental autoimmune encephalomyelitis.

J Neuroimmunol. 2014 Dec 15;277(1-2):67-76. doi: 10.1016/j.jneuroim.2014.09.022. Epub 2014 Oct 8.

Robinson AM, Sakkal S, Park A, Jovanovska V, Payne NL, Carbone SE, Miller S, Bornstein JC, Bernard CC, Boyd R, Nurgali K.

Mesenchymal stem cells and conditioned medium avert enteric neuropathy and colon dysfunction in guinea pig TNBS-induced colitis.

Am J Physiol Gastrointest Liver Physiol. 2014 Dec 1;307(11):G1115-29. doi: 10.1152/ajpgi.00174.2014. Epub 2014 Oct 9.

Herszfeld D, Payne NL, Sylvain A, Sun G, Bernard CC, Clark J, Sathananthan H.

Fine structure of neurally differentiated iPS cells generated from a multiple sclerosis (MS) patient: A case study.

Microsc Microanal. 2014 Dec;20(6):1869-75. doi: 10.1017/S1431927614013312. Epub 2014 Oct 22.

Tafreshi AP, Payne NL, Sun G, Sylvain A, Schulze K, Bernard CC.

Inactive GSK3beta is disturbed in the spinal cord during experimental autoimmune encephalomyelitis, but rescued by stem cell therapy.

Neuroscience. 2014 Sep 26;277:498-505. doi: 10.1016/j.neuroscience.2014.07.013. Epub 2014 Jul 23.

Shetty A, Gupta SG, Varrin-Doyer M, Weber MS, Prod'homme T, Molnarfi N, Ji N, Nelson PA, Patarroyo JC, Schulze-Topphoff U, Fogal SE, Forsthuber T, Sobel RA, Bernard CC, Slavin AJ, Zamvil SS.

Immunodominant T-cell epitopes of MOG reside in its transmembrane and cytoplasmic domains in EAE.

Neurol Neuroimmunol Neuroinflamm. 2014 Aug 14;1(2):e22. doi: 10.1212/NXI.0000000000000022. eCollection 2014.

Turvey ME, Koudelka T, Comerford I, Greer JM, Carrol W, Bernard CC, Hoffmann P, McColl SR.

Quantitative proteome profiling of CNS-infiltrating autoreactive CD4+ cells reveals selective changes during experimental autoimmune encephalomyelitis.

J Proteome Res, 2014 Aug 1. 13(8): p. 3655-70. doi: 10.1021/pr500158r. Epub 2014 Jul 1.

McDonald CA, Short M, Graham J, Bernard CC.

The potential of human amnion epithelial cells as an immunomodulatory and neuroregenerative treatment for multiple sclerosis.

Perinatal Stem Cells. 2014 July 19;Book part II:231-242. doi: 10.1007/978-1-4939-1118-9_21.

Lehmann-Horn K, Kinzel S, Feldmann L, Radelfahr F, Hemmer B, Traffehn S, Bernard CC, Stafelmann C, Bruck W, Weber MS.

Intrathecal anti-CD20 efficiently depletes meningeal B cells in CNS autoimmunity.

Ann Clin Transl Neurol. 2014 Jul;1(7):490-6. doi: 10.1002/acn3.71. Epub 2014 Jul 3.

Wise AF, Williams TM, Kiewiet MB, Payne NL, Siatskas C, Samuel CS, Ricardo SD.

Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury.

Am J Physiol Renal Physiol. 2014 May 15;306(10):F1222-35. doi: 10.1152/ajprenal.00675.2013. Epub 2014 Mar 12.

Chung JY, Figgett W, Fairfax K, Bernard CC, Chan J, Toh BH, Mackay F, Alderuccio F.

Gene therapy delivery of myelin oligodendrocyte glycoprotein (MOG) via hematopoietic stem cell transfer induces MOG-specific B cell deletion.

J Immunol. 2014 Mar 15;192(6):2593-601. doi: 10.4049/jimmunol.1203563. Epub 2014 Feb 14.

Wang CK, Gruber CW, Cemazar M, Siatskas C, Tagore P, Payne N, Sun G, Wang S, Bernard CC, Craik DJ.

Molecular grafting onto a stable framework yields novel cyclic peptides for the treatment of multiple sclerosis.

ACS Chem Biol, 2014. 9(1): p. 156-63. doi: 10.1021/cb400548s.

Zhou K, Thouas G, Bernard CC, Forsythe JS.

3D presentation of a neurotrophic factor for the regulation of neural progenitor cells.

Nanomedicine (Lond), 2014. 9(8): p. 1239-51. doi: 10.2217/nnm.

Shetty A, Gupta SG, Varrin-Doyer M, Weber MS, Prod'homme T, Molnarfi N, Ji N, Nelson PA, Patarroyo JC, Schulze-Topphoff U, Fogal SE, Forsthuber T, Sobel RA, Bernard CC, Slavin AJ, Zamvil SS.

MOG transmembrane and cytoplasmic domains contain highly stimulatory T-cell epitopes in MS.

Neurol Neuroimmunol Neuroinflamm, 2014. 1(2): p. e20. doi: 10.1212/NXI.0000000000000020.

Payne NL, Sun G, McDonald C, Moussa L, Emerson-Webber A, Loisel-Meyer S, Medin JA, Siatskas C, Bernard CC.

Human adipose-derived mesenchymal stem cells engineered to secrete IL-10 inhibit APC function and limit CNS autoimmunity.

Brain Behav Immun. 2013 May;30:103-14. doi: 10.1016/j.bbi.2013.01.079. Epub 2013 Jan 29.

Payne NL, Sun G, McDonald C, Layton D, Moussa L, Emerson-Webber A, Veron N, Siatskas C, Herszfeld D, Price J, Bernard CC.

Distinct immunomodulatory and migratory mechanisms underpin the therapeutic potential of human mesenchymal stem cells in autoimmune demyelination.

Cell Transplant. 2013;22(8):1409-25. doi: 10.3727/096368912X657620. Epub 2012 Oct 4.

Litwak SA, Payne NL, Campanale N, Ozturk E, Lee JY, Petratos S, Siatskas C, Bakhuraysah M, Bernard CC.

Nogo-receptor 1 deficiency has no influence on immune cell repertoire or function during experimental autoimmune encephalomyelitis.

PLoS One. 2013 Dec 5;8(12):e82101. doi: 10.1371/journal.pone.0082101. eCollection 2013.

Hou ZL, Liu Y, Mao XH, Wei CY, Meng MY, Liu YH, Zhuyun YZ, Zhu H, Short M, Bernard CC, Xiao ZC.

Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis.

Cell Adh Migr. 2013 Sep-Oct;7(5):404-7. doi: 10.4161/cam.26941. Epub 2013 Oct 30.

Chen X, Kezic J, Bernard CC, McMenamin PG.

Rd8 mutation in the Crb1 gene of CD11c-eYFP transgenic reporter mice results in abnormal numbers of CD11c-positive cells in the retina.

J Neuropathol Exp Neurol. 2013 Aug;72(8):782-90. doi: 10.1097/NEN.0b013e31829e8375.

Weber MS, Prod'homme T, Patarroyo JC, Molnarfi N, Karnezis T, Lehmann-Horn K, Danilenko DM, Eastham-Anderson J, Slavin AJ, Linington C, Bernard CC, Martin F, Zamvil SS.

B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity.

Ann Neurol. 2010 Sep;68(3):369-83. doi: 10.1002/ana.22081.

Barnard AL, Chidgey AP, Bernard CC, Boyd RL.

Androgen depletion increases the efficacy of bone marrow transplantation in ameliorating experimental autoimmune encephalomyelitis.

Blood. 2009 Jan 1;113(1):204-13. doi: 10.1182/blood-2008-05-156042. Epub 2008 Sep 29.